portfolio

Portfolio

Some of My Works

My second PhD was about Canonical Polyadic Decomposition (aka CPD aka  Candecom/Parafac aka CP decomposition).  The papers below are about CPD, multi-linear SVD,  decomposition into a sum of multilinear rank-(1, L_r, L_r) terms, and block-term tensor decomposition.


Work in progress


  1. I. Domanov and L. De Lathauwer. Decomposition of a tensor into multilinear rank-(1, L_r, L_r) terms, arXiv:1808.02423.(submitted)
  2. I. Domanov, N. Vervliet, and L. De Lathauwer. Decomposition of a tensor into multilinear rank-(M_r, N_r, \cdot) terms, Internal Report 18-51, ESAT-STADIUS, KU Leuven (Leuven, Belgium), 2018.(current version)
  3. I. Domanov and L. De Lathauwer. On the similarity of tensors with column equivalent matrix unfoldings, Internal Report 18-70, ESAT-STADIUS, KU Leuven (Leuven, Belgium), 2018.


Publications in journals


  1. M. Sørensen, I. Domanov, and L. De Lathauwer. Coupled canonical polyadic decompositions and multiple shift-invariance in array processing, IEEE Transactions on Signal Processing, 66(14):3665-3680, 2018.
  2. M. Boussé, N. Vervliet, I. Domanov, O. Debals, and L. De Lathauwer. Linear Systems with a Canonical Polyadic Decomposition Constrained Solution: Algorithms and Applications, Numer Linear Algebra Appl., 2018 (published online).
  3. I. Domanov, A. Stegeman, and L. De Lathauwer. On the largest multilinear singular values of higher-order tensors, SIAM J. Matrix Anal. Appl., 38(4):1434-1453, 2017.
  4. I. Domanov and L. De Lathauwer. Canonical polyadic decomposition of third-order tensors: relaxed uniqueness conditions and algebraic algorithm, Lin. Alg. Appl., 513, 342-375,2017.
  5. I. Domanov and L. De Lathauwer. Generic uniqueness of a structured matrix factorization and applications in blind source separation, IEEE Journal of Selected Topics in Signal Processing, 10(4):701-711, 2016.
  6. L. Sorber, I. Domanov, M. Van Barel, and L. De Lathauwer. Exact Line and Plane Search for Tensor Optimization, Computational Optimization and Applications, 63(1):121-142, 2016.
  7. I. Domanov and L. De Lathauwer., Generic uniqueness conditions for the canonical polyadic decomposition and INDSCAL, SIAM J. Matrix Anal. Appl., 36(4):1567-1589, 2015.
  8. M. Sørensen, I. Domanov, and L. De Lathauwer. Coupled Canonical Polyadic Decompositions and (Coupled) Decompositions in Multilinear rank-(L_{r,n}, L_{r,n}, 1) terms — Part II: Algorithms, SIAM J. Matrix Anal. Appl., 36(3):1015-1045, 2015.
  9. I. Domanov and L. De Lathauwer. Canonical polyadic decomposition of third-order tensors: reduction to generalized eigenvalue decomposition, SIAM J. Matrix Anal. Appl., 35(2):636-660, 2014.
  10. I. Domanov and L. De Lathauwer. On the Uniqueness of the Canonical Polyadic Decomposition of third-order tensors — Part II: Uniqueness of the overall decomposition, SIAM J. Matrix Anal. Appl., 34(3):876-903, 2013.
  11. I. Domanov and L. De Lathauwer. On the Uniqueness of the Canonical Polyadic Decomposition of third-order tensors — Part I: Basic Results and Uniqueness of One Factor Matrix, SIAM J. Matrix Anal. Appl., 34(3):855-875, 2013.


PhD thesis II


I. Domanov. Study of Canonical Polyadic Decomposition of Higher-Order Tensors, PhD thesis, Faculty of Engineering, KU Leuven (Leuven, Belgium), Sep 2013, 143p.


Publications in proceedings